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Microstructure and conductivity of hierarchical laminate composites
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Certain hierarchical laminates with a wide separation of length scales are known theoretically to have
optimal transport and mechanical properties. We derive analytical expressions forpibiat probability
functions that statistically characterize the microstructure for more general hierarchical laminates with an
arbitrary number of stages and a finite separation of length scales. Using two-point probability information, we
rigorously bound the effective conductivitypr dielectric constanttensor for macroscopically anisotropic
laminates and study how the separation of length scales affects the effective properties.

PACS numbsgs): 05.20—y, 03.20+i

I. INTRODUCTION Also, a point lies in phase 1 of the entire laminate exactly
when itsx coordinate lies in phase 1 of the first stage and its
Since the details of the microstructure of random materiy coordinate lies in phase 1 of the second stage of lamina-
als are usually not completely known, researchers have, ition. Since these events are independent, we see that the
lieu of an exact determination, either estimated or boundesiolume fraction of phase 1 of the entire laminate is given by
the effective properties of random materials given limited
microstructural informatiofil,2]. One interesting problem in p1=1— =V ¢ 2

the case of bounding approaches is finding the microstruc- i _ _ .
tures that saturate the bounds, i.e., determining the optim&lY répeating this procedure one can create higher-rank lami-

microstructures. Certain laminate composites with structuraiat€s in the plane. We also can generalize this procedure to

hierarchy(structure at different length scajeasre known to  Nigher dimensions, although we restrict our attention to two
optimize the effective conductivitj3—6] as well as the ef- dimensions in this paper. Finally, laminates in general do not

fective elastic modul{5-11]. Hierarchical composites are necessarily need to have orthogonal stages; we only consider
also of practical interest since they are abundant in naturéuch Iamlnates in this paper to _faC|I|tate our charactenzatl_on
[12]: tendon[13], bone[14], and mollusk shell§15] are of the microstructure. We WI|| dlscus§ how to.apply our mi-
excellent examples of hierarchical biological composites. crostructural characterization to laminates without orthogo-

To our knowledge, the quantitative characterization of the'a! Stages. , , . .
microstructure(via statistical correlation functionf hier- Typical one-dimensional systems from which laminates

archical laminates has been lacking. Moreover, there ar@€ constructed are fully penetrable rods, totally impen-
presently no rigorous estimates of the effective properties oftrable rods in thermal equilibrium, and one-dimensional

hierarchical laminates when the separation between thd@ndom checkerboards.” Realizations of these three sys-
length scales is finite. In this paper, we will address thes&€MS aré shown in Fig. 2; the systems depicted have equal

issues in the context of finding the effective conductivity "0d lengths and volume fractions of the phases. Notice that
tensor of such materials. the clusters could have width larger thenin the systems
In Fig. 1 we show a portion of a random laminate of Which permit the individual rods to overlap. By extending

second ranki.e., one that possesses two levels of hierarchytn€se one-dimensional systems into two dimensions, hierar-

It is constructed in two stages. The first stage is simply #£hical laminates are constructed. _ _ _
series of parallel strips of widtt, in the x direction gener- Much research has been conducted on hierarchical lami-

ated by some one-dimensional random process. For this pr@tes with a wide separation of length scas6] (for lami-
cess we defineb(ll) and ¢(21) to be the volume fractions of Nates of second rank, this condition means thaid, tends

the disconnected phasghase 1 and the “slab” phase
(phase 2, respectively. We also respectively defiog and

o, to be the conductivities of phases 1 and 2. The second
stage of lamination adds perpendicular strips of widihn

the gaps of the first stage. We defipé?) and ¢$? to be the
volume fractions of phases 1 and 2 for the second-stage pro-
cesses, respectively. Clearly from this construction
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. FIG. 1. A portion of a typical second-rank laminate, and one
Electronic address: johng@matter.princeton.edu way that seven points could fall within the gaps of the first stage of
Electronic address: torquato@matter.princeton.edu lamination.
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If we omit the series in(3), we obtain the well-known

@ Hashin-Shtrikman bounds on the effective conductivity of
isotropic two-phase composites in two and three dimensions
[18]. These bounds are the best possible given only volume-
fraction information, and henceptimal since they can be
realized for several classes of composit@gt,18,19. One
T T P R R T N SR R B such class of optimal structuréise., structures that achieve
these boundsare macroscopically isotropic laminates, which
have a wide separation of length scales and satisfy the vol-

ume fraction requiremeriB,4]
FIG. 2. The three one-dimensional random systems considered

in this paper{a) fully penetrable rodgb) totally impenetrable rods, ¢(21): 4,(22)/4,(12). (6)
and(c) a one-dimensional random checkerboard process. The rods
of the three systems have a common widtthowever, the clusters  For macroscopically isotropic laminates, the tensor coeffi-
in systems(a) and(c) can be longer thad due to overlap. Lami- cientsA®) must vanist6]
nates are generated by extending such systems into two- If Sznis independent of the directiof (statistical isot-

i ional f labs. . - . .
dimensional systems of gaps and slabs ropy), or is symmetric about the lin@d= /4, thenA, is

to infinity). For such laminates, the fields are piecewise uni-trIVIaIIy zero in view of (5). However, from geometrical con-

form within the two phases of the composite, and so exac§ideratiqns(eIaborated in _Sec. )I’I.SZ is in_herently s_tatisti-
expressions for the effective properties can be obtained b ally anlsotrop_|c for the hierarchical I_ammate of Fig. 1 and
using macroscopic methods. However, laminates with only &14S OPeys neither of these symmetries, &gt as shall be

finite separation of length scales do not have piecewise unﬁhow.n’ vanl_shes anyway when Fhe Iaml_na_te IS macroscopi-
q.ally isotropic. To demonstrate this, we will first calculate the

form fields, and for this reason the macroscopic properties of". tructure functi for laminat d th 5) t
such laminates cannot be calculated analytically. Some othdp'crostructure func lor®, for laminates and then us§) to

technique must be employed to estimate or bound the effec?—Xp"C't_ly ShO_W’ ffo”? the microstructure, that, = 0 for mac-
tive properties. roscopically isotropic laminates.

: ; - : By taking certain Padepproximants of(3), Sen and
To study laminates with a finite separation of length ) X .
scales weywill use contrast expansionptheory which %vag'orquato obtained bounds of arbitrary order on the effective
formulated by Sen and Torquafd6,17. They derived the conductivity tensor in terms of tha{’, which in turn de-
following series expansion for the effective conductivity ten-Pend on theS, [16]. In this paper we will study the second-
sor o, for any d-dimensional two-phase random composite2rder bounds obtained from(4, 1] Padeapproximant of(3).

(in particular, random laminates The bounds on the effective conductivity in the two principal
directions are identical and equal to the Hashin-Shtrikman
(¢,“3”)2(0.e_ o) (oe+(d—1)a;l] bounds wheneveh,=0. However, wherA, is not equal to

the zero tensor, the two sets of bounds are not identical but
” . instead are directionally dependent. Therefore, when we take
=¢iBijl— nZZ AVBY (3 laminates which satisf¢6) and have an increasing separation
- of length scales, the bounds in the two principal directions
both converge to the Hashin-Shtrikman bounds. Approaching
laminates from the perspective of their microstructure there-
fore allows us to study how the separation of length scales
4) (i.e., the nonuniformity of the fields within the phases-
fects the effective conductivity tensor.
Summarizing, in this paper we study the following ques-
tions: What are the, for laminates with any separation of
X b AR X length scales? Does the functional behavioBgfeflect the
pointsrP=ry, ... ry all lie within phasei. (Bounds of ar- - ¢qngiriction of the laminate? Can we bound the effective
bitrary order can be obtained frof8); this W'!Il)be d(lg)cussed conductivity of laminates with a finite separation of length
later) Unlike the other tensor coefficientd;”=A3", and  gcales? How does the separation of length scales affect these
hence;forth fchelr common value WI|.| be dgnoted_ Ay. In" pounds? How close are they to the bounds for laminates with
two dimensionsA; is traceless and is explicitly given by g infinite separation of length scales? Are these results in
L dr (2 agreement with known results as the separation of length
A2=—Iimj _rj de
Ts_.0ls T Jo

wherel is the identity tensor,j=1,2,i#],

O'i_O']'

Pi” o d=1a;"

and the tensor coefficientsA!) are functionals of
Si,...,Sy, WhereSy(rP) is the probability thatp given

cos20  sin26
sin20 —cos29

scales tends to infinity? Finally, one outstanding unsolved
problem: what are all classes of optimal composites; i.e.,
what form must theS, have so that th&{" vanish? A study

X[Sy(r,0)— ¢2] (5)  of the microstructure of laminates may provide a first step
toward answering this difficult last question.
for statistically homogeneous media; see Réb| for the In Sec. Il we obtain analytical representations of e

integral expressions for the higha# . The quantity (,6)  for fully penetrable laminates of arbitrary rank agg for
in the integrand represents the separation between the twaminates of arbitrary rank and construction in terms of the
points that lie in phase 1 in polar coordinates. microstructure of the one-dimensional generating processes.
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We explicitly calculateS, for second-rank fully penetrable also defineL() to be the one-dimensional lineal path func-
laminates, totally impenetrable laminates, and laminates genion for the process which determines tib stage of lami-
erated by random checkerboards. Our expressions are validhtion.

for laminates with a finite separation of length scales. In Sec. We now characterize the microstructure of laminates by
Il we use our expression faB, to calculate the two-point calculatingS, in terms of the functions(’ andL®.

tensor coefficienA, and therefore bounds o, for lami-

nates with a finite separation of length scales. We then let the

separation of length scales tend to infinity and verify that the  B. S, for fully penetrable laminates of arbitrary rank

bounds in the two principal directions indeed both converge
to the Hashin-Shtrikman bounds for macroscopically isotro
pic hierarchical laminates.

By a fully penetrable laminatewe mean a laminate gen-
‘erated by fully penetrabl@.e., spatially uncorrelatedods at
each stage of lamination, so that iftle stage of lamination is
probabilistically determined by the width of the laminates
II. MICROSTRUCTURE OF LAMINATES d; and the number density of laminatign. We allow the
_ ) ) ) possibility that the strips overlap in general, so that the
To begin, we study the microstructure of laminates in the«g|gps” generated by the strips of thieh stage may have
plane. We first define the-point phase 1 probability func- idth greater tham;, . We also assume the processes of the
tions S, and the lineal path functioh. These functions are jth stage of lamination are identically distributed and inde-
inherently anisotropic for Ian_nnates. since the laminategyendent both of each other and the processes of every other
themselves are statistically anisotropic. We develop a reCUistage of lamination. This assumption also holds for the more
sive equation valid for ang, for random laminates of arbi- general laminates considered later in this paper.
trary rank generated by systems of fully penetrable rods. Tq calculate the probability that pointsry,rs, . . . ,r, all
Generalizations are then discussed, including an expressiqg)| in the disconnected phase okéh-rank fully penetrable
for S, for laminates of arbitrary rank and construction; this |aminate, we first order the points by theirx-coordinates so
expression will be used in our numerical calculationsfef 5t X;<X,<---=<xX,. We then use a key property of ran-
in Sec. Ill. We then use this expression to calculgjefor  gom [aminates: the laminates of order 1 embedded in the
three types of_ second-rank Iam!nates: fully pen_etrable |am'gaps of the first stage of lamination are generatepen-
nates, totally impenetrable laminates, and laminates genefently of each other.
ated by random checkerboards. Finally, we study tw To utilize this feature, we introduce some notation to enu-
reflects the structure of laminates on their multiple lengthyerate the 21 different ways that the ordered points
scales(In Appendix A we will consider the lineal path func- ¢oyd fall into the gaps of the first stage of lamination. Con-

tion for second-rank laminates. sider the sefA of n-tuples of the letters 0 and 1 whosth
element is 1. Then there is a one-to-one correspondence be-
A. Definitions of microstructure functions tween the elements of this set and the permutations of the

n points in different gaps: ipg=0 andp,, ... ,p, are the

The probability thain points with positiong™ all lie in
phase 1 is denoted &,(r")=r4, ... ,r, and can be explic-
itly written as[20]

positions of the 1s in an elemeatof A, we associate with
this element a the event that the sets of points

{xpjﬂ, o ,xpjﬂ} fall in the same gap and in a different gap

n than the set corresponding to any othjer(For brevity we

S,(r"M= H 1(ry) /), (7) suppress the dependence of fheand m on the n-tuple
=1 a.) We conclude from this bijection that there are indeed

2"~1 ways the ordered points could lie in the gaps.
wherel is the indicator function of phase 1, i.e., To illustrate this notation, consider the event of seven
points falling in the disconnected phase depicted in Fig. 1.
From left to right, the first four points lie in one gap of the
_ (8) first stage of lamination, the next two points lie in another
0, otherwise. gap, while the last point lies a third gap. The sequence cor-
responding to this event i®={0,0,0,1,0,1,1, so that
The angular brackets denote an ensemble average over tAE=3. Po=0 (as alway} p;=4, p,=6, andp3=7 (pn=n
possible realizations. For statistically homogeneous mediglways. Under this constructiore,=1 exactly when point
the S, are dependent only on the relative displacements sb iS the rightmost point in a gap. _
that, for exampleS, = ¢,, the volume fraction of phase 1. Since a Poisson distributed system has independent and
When we refer to the microstructure of laminates in thisStationary increments, the probability that thepoints will
paper,S, will denote the microstructure function for the full fall in the gaps of the first stage of lamination according to
laminate. We also defin€( to be then-point probability — the arrangement associated watk: A is

1, rinphasel,
I(r)=

function for phase 1 for the one-dimensional process which n-1
determines théth stage of lamination. P(a)=SP(x. ... x M (X .1 —X ‘a 9
The probability that a vectok is wholly contained in (@)= 0 n)lﬂl Xira=xia), O

phase 1 is called the lineal path functidi] and is denoted
by L(x). This probability is different tha®,, which requires
that only the endpoints of the line lie in the same phase. Wevherea, is thelth element ofa,
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LO(r) 1, r<d,, ity that the sel{rpjﬂ, ce ,rij} (i.e., all the points that lie
M(r,0)= () =le r-d)  y>d,, (100 in an arbitrary gapalso lies in the disconnected phase. Since
the processes within the gaps of the first stage are embedded
laminates of rankk—1 rotated 90° from the usual
orientation, this  conditional probability is just
M(r,1)=1—M(r,0). (11) S,’Jj_pjfl(r‘pjflﬂ, . ,rtpj), wherer! is the transpose of
and SF’) is the p-point disconnected-phase probability func-

and

The functionsS, andL for fully penetrable rods are given . .
explicitly in (17) and(18). The calculation of this probability tion of the embedded laminates of rakic 1.

is not so trivial for more general one-dimensional processes, Since the ProCesses in the embedded Iammgtes are as-
as discussed in the next subsection. sumed to be independent of each other and the first stage of

Once we have isolated thecoordinates in the gaps of the Iam_ination, we finally conclude using the law of total prob-
first stage of lamination, we must now calculate the probabil-2bility that

n—1 m
Sa(ras - )=S0, o x) 2 T] MOqa—xan [l sy (v orp). (12)
acA i=1 =1 NN j j

Through repeated use dfl2) we can reduceS, for a tends to its long-range value Qﬁ asx,y—o. This will be
kth-rank laminate to the one-dimensional functicﬁf,‘i for  used in the integrations of the next section.

l<sp=<nand l=i<k. Finally, we can use our analysis to calcul&gfor lami-
nates that do not have orthogonal stages. For example, a
second-rank laminate whose second stage is at ahfylem

horizontal can be transformed to a topologically equivalent

In principle, the above approach could be applied to lami-prthogonal laminate via the linear transformation
nates of arbitrary rank generated by random processes other

than fully penetrable rods. However, such a recursive rela-
tionship would require knowledge of microstructure func-
tions never before considered in the literature. For exampl

C. S, for general random laminates

(X,y)—(X,y—x tand). (14)

determinin requires knowing the probability that. qiven 1o calculateS, for this slanted laminate, we would first
gS; req 9 P Y ' 9 project the points to their images under the above transfor-

three points, the first two lie in one gap and the third lies in_ .. ; .
another gap. While such probabilities can be computed exr_nahon and then calculat, for this orthogonal laminate.

plicitly for fully penetrable rods, and is done i®), they . .
have not been considered for more general one-dimensional D. Calculation of S, for second-rank laminates

systems. - _ In this section we will us€13) to calculateS,(x,y) for

~ However, the probability that only two points do or do not second-rank fully penetrable laminates, totally impenetrable
lie in the same gap is determined by the defined onetgminates, and laminates generated by random checker-
dimensional two-point phase 1 probability functid®¥ and  poards. We will also show tha, reflects the behavior of
the lineal path functions (", and soS, can be calculated for laminates on their multiple length scales.

general random laminates of arbitary rank. Our analysis of

conditioning of the positions of the two points relative to the 1. Fully penetrable laminates

first stage of lamination is particularly self-evident in deter-
mining S, for second-rank laminates of arbitrary construc-
tion. If the two x coordinates lie in the same gap, then the
y coordinates both must lie in phase 1 of the second-sta
one-dimensional process in that gap. On the other hand, |
they lie in different gaps, then the twocoordinates need to
lie in phase 1 of two independent processes. Using the law &
total probability and this analysis, we conclude that

y)=L®(x)S? (1)y)— L) (2))2
S2(%,Y) (X)S7(y) +[S7(%) (x)1(17) 13 then we havg22

We now explicitly stateS, for fully penetrable second-
rank laminates in terms of the generating one-dimensional
processes. The microstructure of fully penetrable r@afs

ample of which is shown in Fig.)2n a line is very well
nderstood. If the rods have diameteand number density
and we define the reduced densityby

n=pd, (15

where ,y) is the displacement between the two points. The S;=¢,=e . (16)
complexity of the general expressi@t?) is thus greatly sim-

plified whenn=k=2. Similar expressions fd8, can be de- For two points separated by a distancehe two-point phase
veloped for laminates of higher rank. As expect8g(x,y) 1 probability function is given by
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e 7w us1, L(uy=e™ 7Y, (18)
sW=le 1 0
whereu=|x|/d is dimensionless distance. so that, not surprisingly. (u) = S,(u) for u<1.
The lineal path function for fully penetrable rods is given ~ Substitution of these results intd3) and use of dimen-
by [21] sionless unitai=|x|/d, andv =|y|/d, yields
|
¢e” UMY uslps=li,
Pe” MU 72, uslp>1,
S(U,v) =1 pi[e MY (e P —e M)+ ], u>lp<l, (19
¢i, u>1lp>1,

where 7, and 5, are the reduced densities for the first andas usual, andv=r/d,. [From geometric considerations,

second stages of lamination, respectively. Notice Byats  S,(w, 8) is symmetric about?= /2 and is periodic with

identically equal top? for sufficiently largeu andv, justas period .] As we see, our simulation data is in excellent

in the one-dimensional case of fully penetrable rods. agreement witl{19). We also note that, as expect&,is not
This expression foB, matches simulation data as well. In symmetric about= 7/4.

Fig. 3 we plotS, for second-rank fully penetrable laminates,

where in thex-direction we takex,=1/4, while in the 2. Totally impenetrable laminates

y-direction we taked,=d;/2 and 7,=1/3. We plot We now consider second-rank laminates which are con-
Sy(w, 6) for w=0.75 andw=2.5 over G< f<m/2, where  gtrycted by systems of hard rods of equal diametr ther-
mal equilibrium. A possible realization of such a system was

X=r coy (20 given in Fig. 2. As before, we need the quanti@§d (x) and
L(M(x) for the one-dimensional processes that generate the
laminate to determin&, for the full laminate. Torquato and
Lado[23] calculatedS, explicitly for a system of hard rods
in equilibrium. After some simplification their expression
can be written in terms of the dimensionless distance
u=|x|/d as

and

y=r sinf (22

k

i —Ty—
exp —[u—k]/a) @

-k
Sy(u)=(1-17) 2, : -
k=0 k!

a

045 |

wherejsu<j+1 and
0.40

S,(w, 8)

a=——. (23

As before, n is the reduced density. Since the rods do not
overlap,

0.35

L w=2.50 ¢ $1=1—1n. (24

V6009 ¢ 0000 6600066008 660006600069

030 - 78 ) Py 0 For sufficiently largeu, S,(u) can be accurately approxi-

9 mated using the method of subtracted singularities, as ex-
plained in Appendix B. This asymptotic approximation will
FIG. 3. The two-point probability functiorS,(w,6) for a  turn out to be useful in numerically computing the tensor

second-rank fully penetrable laminate widh=d,/2, 7,=1/4, and  CcoefficientA,, as described in Sec. IIl.
7,=1/3. Hered; and 5, are the rod lengths and reduced densities Also, Lu and Torquatd21] calculated the lineal path
of stagei, respectively.S, is shown at dimensionless radial dis- function L exactly for a system of hard rods in equilibrium
tancesw=r/d,;=0.75 andw=2.5. Computer simulation data are and found that
represented by circles. We see that the theoretical expre€k®pn
for S, is in excellent agreement with simulation results. L(u)=(1—n)exp(—u/a). (25)
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. . . ; ; ; different one-dimensional processes. The first stage is gener-
0.13 | 1 ated by a system of fully penetrable rods wifh=0.4. The

012 | ) second stage is generated by systems of totally impenetrable
0.11 rods in thermal equilibrium withy,=0.8 andd,=0.1d, .

% 0.10 As we seeS, for this laminate reflects properties of the

€ 0.09 functional behavior o5, for the one-dimensional processes.

5 008 On the length scalev=0(1), S, decays exponentially and

£ 007 then more or less flattens, just like it does for “pure” fully

5 006 penetrable rodgsee (17)]. However, on the length scale

@ 0.05 w=0(0.1), we see a sharp cusp and dampened oscillations,

E 0.04 just like S, for “pure” totally impenetrable rods in thermal

& 0.03 equilibrium[see(22)]. While we cannot conclude decisively
0.02 from this graph the precise components of the laminate, we
0.01 see that the structure of the laminate on both length scales is
’ | . ‘ . ‘ . ‘ reflected inS,.
0000 02 04 06 08 10 12 14

Dimensionless distance, w = r/d, Ill. EFFECTIVE CONDUCTIVITY TENSOR
OF LAMINATES

FIG. 4. Sy(w,w/6) in a mixed second-rank laminate where A laminate with a finite separation of length scales has
againw=r/d;. The first stage is generated by fully penetrable rods,. P 9

with ;=0.4. The second stage is generated by totally impenetrablgeIds Wh'.Ch are not piecewise uniform, and So Its effectlve
rods in thermal equilibrium withy,=0.8 andd,=0.1d,. As we conductivity cannot be calculated analytically. We will use

see,S, for this mixed system has characteristics of both systems of§igOrous second-order bounds an, that depend onS,

the two different length scales. (which was calculated in the previous secjiamd the phase
conductivitieso; ando, to estimate the effective conductiv-
As before,L (u)=S,(u) for u<1. ity for laminates with a finite separation of length scales. We

Therefore, to calculats, for totally impenetrable lami- Verify that these bounds converge to the Hashin-Shtrikman
nates, we substituté?2) and (25) with appropriates; and bounds for macroscopmally |so_trqp|_c Iamlnate_s, i.e., lami-
7, into (13). As with fully penetrable laminates, this expres- nates that satisfg6) and have an infinite separation of length
sion is also in agreement with computer simulations. scales.

3. Random checkerboard laminates A. Second-order contrast bounds

A third type of laminate is constructed by one- By taking certain Padeapproximants of(3), Sen and
dimensional checkerboard processes, also depicted in Fig. Zprquato[16] obtained bounds of arbitrary order on the ef-
in which the line is divided into equisized sections of width fective conductivity tensow,. The second-order bounds on
d. Each section, independent of the other sections, belongs i@, are given by
phase 1 with probabilityp; and phase 2 with probability

¢,. The required microstructure functions for phase 1 are o, ¢i(oi—0)) _i (gi—0j) o
: — =+ —]I —ay| , (29
then given by o o T
(1-u)p;+ug?, u<l, wherei,j=1,2 andi #j as before,
S (u)=) (26)
o1, u>1, 1
a=3(A—di¢l), (29
and

and A, is given by (5). For o,=0;, we obtain a lower
L(u)=(1-2)p]+zp] "1, (27)  bound from(28) for j=1 andi=2, and we obtain an upper
bound forj=2 andi=1.
where the dimensionless distance is decomposed as We note in passing that one can eliminate the parameter
u=(n—1)+z with 0<z<1. Substitution of these inttl3) & by utilizing the property that Te,= — ¢;¢; (since A,
gives S, for the full laminate. We note that for sufficiently is tracelessto yield the simpler bounds on the eigenvalues
largex andy, S,(x,y) is identically equal top?, just as in A1 andX, of o obtained by Lurie and Cherka¢®,9] and

the case of the one-dimensional checkerboard model. by Tartar[4]:
4. Behavior of S on different length scales i+ 1 " 1 < i ~ ) (30)
To conclude this section we discuss how the grapB.of o1 M=o Ao gplor om0y
can reflect the processes which construct the laminate. In
particular, we show tha, reflects microstructural informa- N SN ) 31)
tion about a composite on its different length scales. 0y N—0p ANp—0p ¢i\op 01— 0]

In Fig. 4 we plotS,(w,/6), where again we use polar
coordinates wittw=r/d,, for a laminate constructed by two whereo,=0.
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WhenA,=0, the boundg28) coincide with the Hashin-
Shtrikman bounds on macroscopically isotropic two-phase
composites, which are known to be optimal for several
classes of composites. One such class is a geometry of space-
filling, singly-coated circular cylindergl8], where the inner
core is one phase and the outer shell is the other phase.
Another example is the Vigdergauz construct[d®]. Also,
the boundg28) are realized foA,+# 0 by space-filling, sin-
gly coated ellipsoid$4,24,25.

Second-rank laminates with a wide separation of length
scales have also been shown by macroscopic methods to:
achieve the bound§28) and thus are optimal composites 0.10 |
[3,4]. We conclude again th#&, must be the zero tensor for
macroscopically isotropic laminates. However, this previous
research does not determife and hence the bound28)

0.40

0.30 I,

020 |+

tropy parameter, y

Anisof

for laminates with a finite separation of length scales. 0.00 ;
In order to quantify the degree of anisotropy of laminates Separation of length scales, g = d,/d,
with a finite separation of length scales, we introduce the
parameter FIG. 5. The anisotropy parameter given in(32), for laminates
max(|A,|As)) which satisfy(6) versus separation of length scalgsd,/d,, at
1l 2

, (32 several volume fractiong, of the disconnected phagehase 1 As
b12 expected,y tends to zero a3y tends to infinity. We see that

) o v<0.05 whenevekp,;>0.2 andq>30.
whereA ; and A, are the eigenvalues &f,. This is a purely

microstructural parameter, independent of the conductivitiegmptotic result thatA, tends to zero as the separation of
oy ando,. Since— ¢1dr,<A1, A<y, [16], we see that length scales tends to infinity whenev® is satisfied. We
0=vy=<1. Wheny=0, the system is macroscopically isotro- also conclude that fully penetrable laminates with a wide
pic. However, wheny=1 (achieved by a system of aligned separation of length scales achieve the anisotropic bounds of
needley the system is quite anisotropic. In the next section(28).

we will study the dependence af on the separation of We now numerically calculaté&, and hencey for lami-

length scales. nates with a finite separation of length scales. In Fig. 5 we
plot numerical evaluations of for laminates which satisfy
B. Calculation of bounds for laminates (6) at various¢; andg. We again see thag—0 asq— .

We also see that, for constant y decreases ag; increases.
This makes heuristic sense: for smél|, the laminate will

- : : resemble a system of aligned needles, while for ladge
(13), and explicitly verify thatA, indeed tends to zero for there will be very few slabs in both theandy directions,

second-rank Iammateg Wh.'Ch Ob.®) as the separation of .and hence the laminate will have similar structure in both
length scales tends to infinity. While this result is expected, Girections

is not at all obvious from the perspective of the microstruc- = ical luation ok btai
ture sinceS,(r, ) is not symmetric aboué= /4 for lami- fom our numerical evaluation ohp, we now obtain
' bounds oro, by using(28). In Figs. 6, 7, and 8 we show the

nates, as discussed in the Introduction. We then calculat)((a andy components ofb.. for fully penetrable laminates of
bounds on the effective conductivity tensor usi@g). y P N yp

To begin our analysis, laminates are symmetric aboypecond rank which satisfy,/c, =10 and(6) for g=1, 10
0= m/2; therefore, in view of(5), the off-diagonal compo- ande, _respecnvely. We see thf'ﬂ as the separation of length
nents ofA, are zero. Our calculation &k, thus reduces to scales increases, the bounds in thandy directions con-

caloulating only one of the diagonal components. dimensional Hashin-Shirikman bounds when the laminate s
We now consider fully penetrable laminates with a wide

separation in length scales and substit(8) into (5) to macroscopically isotropic. Usin(28) and (13), we are also

calculateA,, asymptotically for fixedy, and 7, as the sepa- able to calculate bounds am, for second-rank laminates of

) . : arbitrary construction.
ration of length scaleq=dj /d,— . We find that Whend,;=d,, we see that the bounds on the effective

(Ag)yy=— ba(1— 282+ ¢1)+O(Ing/q) (33  conductivity in thex direction are somewhat smaller than the
i bounds in they direction; in fact, for sufficiently smali,,
asq—. Recall that¢{?) is the volume fraction of phase 1 the lower bound on¢),, is larger than the upper bound on

of the one-dimensional process which determined the secorf@e)xx. regardless of which phase has a higher conductivity.
stage of lamination, which is A physical explanation of this phenomenon when the discon-

nected phase is a better conductor than the connected phase
¢<12>:ef =g P22 (34) is trivial: even for very smallg,, the volume fraction re-
quirement(6) still requires that¢(12) will be no smaller than
for fully penetrable laminates frorfL6). The calculation of 0.5. Therefore, the laminate will resemble a system of highly
(33) is described in Appendix C. We conclude from this as-conducting needles aligned in tlyedirection. On the other

We now directly calculaté, for laminates with any sepa-
ration of length scales by numerically integratiff§) using
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Volume fraction, ¢, Volume fraction, ¢,
FIG. 6. The second-order bounds on thandy components of FIG. 8. As in Fig. 6, excepi=. Since we impose an infinite

the scaled effective conductivity./o, for second-rank fully pen-  separation of length scales, the laminates are macroscopically iso-

etrable laminates in whiclw,/o,=10. Hereo; and o, are the  tropic and the bounds are independent of direction.

conductivities of phases 1 and 2, respectively. The laminates de-

picted in the above graph are determined®yand the length scale arbitrary separation of length scales. We have also explicitly

ratioq=d, /d,=1. verified thatA, indeed vanishes for optimal, macroscopically
isotropic laminates, even thoudsy for laminates does not

hand, if the slabs are better conductors, then current will b&ave symmetry about= /4. _ _

able to flow in they direction in a straight line unimpeded, . 1S last observation leads to the natural question raised

while current in thex direction will tend to flow around the " the Introduction: what symmetries must tSg for opti-

needles. Such heuristic explanations, however, do not e){pal, macroscoplcglly |sot(ri())p|c gompos!teg POSSESS SO that all

plain the behavior of the bounds for all possible IengthOf the_tensor coefficientd,’ vanish? This is a very d_n‘f_lcult

scales, phase conductivities and phase volume fractions. question to answer generally. We.ha\{e shown explicitly that
a sufficient condition forA, to vanish is anS, of the form

(13) for any choice of SV, L™, andS{?, as long as con-

IV. CONCLUSIONS dition (6) is satisfied and the separation of length scales be-

tween the two stages tends to infinity. Fr@®), another suf-

' . . . ficient condition is symmetry 0%, aboutd= /4. We have

S, for general laminates of arbitrary rank in terms of their ot shown, however, that these conditions are necessary. We

constituent processes. We have explicitly gi@nfor three  15ye also not considered conditions which would ensure that
different types of second-rank laminates: fully penetrable,q higherA(‘) vanish
{ .

totally impenetrable, and random checkerboard. Using our rrom 4 practical point of view, laminates with an infinte
expression forS,, we have calculated the tensor coefficientseparation of length scales cannot be constructed. A natural
Az numerically for general second-rank laminates, therebyyyestion is thus determining how large the separation of
obtaining estimates on the effective conductivity tensor inength scales should be so that, for all intents and purposes,
the form of bounds. We have done this for laminates with arthe laminate is an optimal structure. Judging by the conver-
gence of the bounds, we suggest that a reasonable condition
for declaring a second-rank laminate to be macroscopically
, : : isotropic isy<<0.05. This is achieved at most volume frac-
tions wheng> 30.

We have calculate®, for fully penetrable laminates and
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Volume fraction, ¢, RANK LAMINATES

To characterize their microstructure, we determiSgdor
FIG. 7. As in Fig. 6, exceptj=10. laminates in Sec. Il. We continue this characterization by



4376 J. QUINTANILLA AND S. TORQUATO 53

determining the lineal path function for second-rank Iami-wherec(zz) is the two-point cluster functiof26] for the sec-
nates, i.e., the probability that the line connecting two pointsond stage of lamination. In the direction we have

lies entirely in one of the phases. Using the independence of

successive stages, the probability that the line between two

ints i irely in phase 1 is gi .
points lies entirely in phase 1 is given by Lz(x’o):rgo N, () (2", (A3)
Li(x,y)=LB(x)L@(y). (A1)

The corresponding probability for phase 2 is not nearly asvhereN,(x) is the probability that, for the one-dimensional
trivial to calculate; a full expression fdr,(x,y) would re-  process which generates the first stage of lamination, a given
guire knowledge of the joint distribution of the size of the interval of lengthx contains exactly gaps(including gaps at
clusters and the number of gaps in a given interval. Howevethe beginning and the end of the interval
in they direction, the connected-phase lineal path function is The probabilityN, for fully penetrable rods was calcu-

given by lated by Domb[27]. In terms of the dimensionless distance
D D) u=|x|/d;, where as before we takesu<j+1, N, is given
L2(0y)= 3"+ ¢17C57(Y), (A2)  py

i k k+1
i1 ke [2U=KTC  [p(u=K)]
No(u)=1+ 3 (- 1) ¢f 1( T ”(kﬂ)! ) (Ad)
for r=0 and by
j-r+1 : ; j+k—1 ; j+k
_ vk ik ([p(u=—j—k+ D] [p(u—j—k+1)] )
Ni(w= 2 (-1 1™ Grk—1 (G+K)! (A5)

for 1<r=<j+1, while N,(u)=0 otherwise. In these expres- "¢

sions 7 is again the reduced density defined (). In one fo=— 2 77 +O(R™). (B2)
dimension, the probability that a given interval has no gaps is =1 %

the two-point cluster functiol®,, which was independently

calculated by @lar and Torquatd28]. Substitution ofN,  (This theorem can be generalized to functions with poles of
into (A3) gives L,(x,0) for second-rank laminates whose finite order greater than one, but for the present purpose this

first stage is generated by fully penetrable rods. generalization is not needgd. _
To apply this theorem to the present problem, we restrict

O<y<1 and define the sequente(y)} by
APPENDIX B: ASYMPTOTIC APPROXIMATION OF S,

FOR HARD RODS IN EQUILIBRIUM ai(y)=Sy(j +y). (B3)

We develop an asymptotic approximation #4(u) as the
dimensionless distanae— for a one-dimensional system Recall thatS, for hard rods in equilibrium is given b{22).
of hard rods of unit diameter in equilibrium. This approxi- ~ We now seek the generating function for this sequence,
mation is useful when numerically calculatihg using(5).  i-€., the function that satisfies

To obtain this approximation, we find a generating func-
tion whose coefficients give,(u). We then use the method ” 4
of subtracted singularities to determine the asymptotic be- f(Z;Y):Z aj(y)z. (B4)
havior of the coefficientsand hences,(u)] for largeu. 1=0

We first state the main theorem behind the method of ) i i . )
subtracted singularitig®9,30. Stralghtfqrward algebraic manipulation verifies that this

Theorem Let the functionf be meromorphic fofz]<R  function is given by
and analytic for|z|=R and z=0, with simple poles inside
this circle atz; with residuesc;, i=1,... m. Then the co-
efficientsf,, defined by

tgyy— (L mexd(z=1)y/a]
(zy)= 1=7 exg (z—1)/a]

(B5)

* Recall thata is defined by(23). To use the method of sub-
f(z)= E f.z" (B1)  tracted singularities to determine the asymptotic growth of
n=0 the coefficients off [and hence the growth @&,(j+y) as
j—], we must first find the poles and associated residues of
satisfy f. Clearlyzy=1 is a pole off with residue
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1-79 0.252
=——. B -
=T 11 (B6)
For »<1 there are no poles with modulus less than one. 0.250

Therefore, asi=j +y—c, (B2) implies that

(j+1) S o248
S 1+1/a1 o e “
=(1-9)? (B7)
0.246
—— Exact
as expected. Wherp=0.5 this limit reduces to the remark- . AX;a;roximate
able identity
0.244 , , ]
kjfk 1 2 3 4 5

lim 2 e k— =_, (B8) Dimensionless distance, u
j—eck=0 (j—k! 2
FIG. 9. Exact graph of the two-point probability function
To determine the oscillations around the long-range value$,(u) for totally impenetrable rods in thermal equilibrium and its
other complex poles must be calculated numerically; theyasymptotic approximation using the first four nontrivial poles. The
will depend on the value of for the system. Every pole of reduced density of the system of rodsjis 0.5. The approximation

f can be shown to be simple and the residue at a pate is very close to the exact result even for small values of the dimen-
given by sionless distanca.

_ (1-npexg(z-1)y/a]
(1+z/la)exd(z—1)/a]’

(B9) APPENDIX C: ASYMPTOTIC BEHAVIOR OF A,
FOR LAMINATES WITH A WIDE SEPARATION
OF LENGTH SCALES
In summary, once we have numerically calculated the

poles of smallest modulus df we can use the above theo- We discuss how33) can be derived for fully penetrable

rem and (B9) to determine the asymptotic behavior of

Sy(u).

To see how useful the above procedure is, we now take

laminates. Combining(19) and (5), we find that, when
d;>2d,,

7n=0.5. The first four nontrivial poles df for this choice of (A2)yy=l1tlaFlaFlatls, (€D
77 are approximately where
2, .= —0.532092-4.597158 (B10) 6 y2—x2
o Js e e g ay,
2
and 2
23 4= —1.393982-10.868006, (B11) d,
:_f f X +y2)2¢1e PiX(e P —e r2%2)dx dy,
. . ay (
with residues ©3
c=—{exd (zx—1)y]}(0.489044- 0.107648) (B12) dy (7200520
l3=— ;Ilm f f (e P2l COF—par s 45y g dr,
= 6—0
for k=1,2 and -

c,=—{exd (z,—1)y]}(0.501655 0.0459462) (B13) dy (2, y2— X2
J X - ) s (@7 PP — d)f)dx dy,
for k=3,4. We now substitute these values ir®2) and y )
compare with the exact result ¢22) for »=0.5. We see in

Fig. 9 that this “asymptotic” expression is in fact very close
to the actual value o$§,(u) for smallu using only the first and
four nontrivial poles. We also can use this expression for
S, at large distances to accurately and quickly calculate the :_fdzf (e~Px—rY— ¢2)dx dy.
integrand of(5) when calculating\, for totally impenetrable 2d,(X“+Yy ) ! '
laminates. (Co)
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We have converted to rectangular coordinates for each dftion of the resulting integrals yield83).

these expressions excdpt We have also used the symme- A similar analysis shows thaB3) is satisfied for lami-

try of S, to calculateA, in terms of integrals on the first nates constructed by one-dimensional random checker-

quadrant. boards. In fact, since all laminates with an infinite separation
As g=d, /d,— for fixed 5, and 5,, we use the domi- of length scales must achieve the Pddinds on effective

nated convergence theordB1] to replace the integrands by conductivity,(33) must be true to leading order, regardless of

a series in X; depending on the domain we expand eitherhow the laminate is constructed. This is not at all obvious

the exponential term or the terrgd—x?)/(x?>+y?)2. Evalu-  from the perspective of the microstructure.
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