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Certain hierarchical laminates with a wide separation of length scales are known theoretically to have
optimal transport and mechanical properties. We derive analytical expressions for then-point probability
functions that statistically characterize the microstructure for more general hierarchical laminates with an
arbitrary number of stages and a finite separation of length scales. Using two-point probability information, we
rigorously bound the effective conductivity~or dielectric constant! tensor for macroscopically anisotropic
laminates and study how the separation of length scales affects the effective properties.

PACS number~s!: 05.20.2y, 03.20.1i

I. INTRODUCTION

Since the details of the microstructure of random materi-
als are usually not completely known, researchers have, in
lieu of an exact determination, either estimated or bounded
the effective properties of random materials given limited
microstructural information@1,2#. One interesting problem in
the case of bounding approaches is finding the microstruc-
tures that saturate the bounds, i.e., determining the optimal
microstructures. Certain laminate composites with structural
hierarchy~structure at different length scales! are known to
optimize the effective conductivity@3–6# as well as the ef-
fective elastic moduli@5–11#. Hierarchical composites are
also of practical interest since they are abundant in nature
@12#: tendon @13#, bone @14#, and mollusk shells@15# are
excellent examples of hierarchical biological composites.

To our knowledge, the quantitative characterization of the
microstructure~via statistical correlation functions! of hier-
archical laminates has been lacking. Moreover, there are
presently no rigorous estimates of the effective properties of
hierarchical laminates when the separation between the
length scales is finite. In this paper, we will address these
issues in the context of finding the effective conductivity
tensor of such materials.

In Fig. 1 we show a portion of a random laminate of
second rank, i.e., one that possesses two levels of hierarchy.
It is constructed in two stages. The first stage is simply a
series of parallel strips of widthd1 in the x direction gener-
ated by some one-dimensional random process. For this pro-
cess we definef1

(1) andf2
(1) to be the volume fractions of

the disconnected phase~phase 1! and the ‘‘slab’’ phase
~phase 2!, respectively. We also respectively defines1 and
s2 to be the conductivities of phases 1 and 2. The second
stage of lamination adds perpendicular strips of widthd2 in
the gaps of the first stage. We definef1

(2) andf2
(2) to be the

volume fractions of phases 1 and 2 for the second-stage pro-
cesses, respectively. Clearly from this construction

f1
~1!1f2

~1!5f1
~2!1f2

~2!51. ~1!

Also, a point lies in phase 1 of the entire laminate exactly
when itsx coordinate lies in phase 1 of the first stage and its
y coordinate lies in phase 1 of the second stage of lamina-
tion. Since these events are independent, we see that the
volume fraction of phase 1 of the entire laminate is given by

f1512f25f1
~1!f1

~2! . ~2!

By repeating this procedure one can create higher-rank lami-
nates in the plane. We also can generalize this procedure to
higher dimensions, although we restrict our attention to two
dimensions in this paper. Finally, laminates in general do not
necessarily need to have orthogonal stages; we only consider
such laminates in this paper to facilitate our characterization
of the microstructure. We will discuss how to apply our mi-
crostructural characterization to laminates without orthogo-
nal stages.

Typical one-dimensional systems from which laminates
are constructed are fully penetrable rods, totally impen-
etrable rods in thermal equilibrium, and one-dimensional
‘‘random checkerboards.’’ Realizations of these three sys-
tems are shown in Fig. 2; the systems depicted have equal
rod lengths and volume fractions of the phases. Notice that
the clusters could have width larger thand in the systems
which permit the individual rods to overlap. By extending
these one-dimensional systems into two dimensions, hierar-
chical laminates are constructed.

Much research has been conducted on hierarchical lami-
nates with a wide separation of length scales@3–6# ~for lami-
nates of second rank, this condition means thatd1 /d2 tends
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FIG. 1. A portion of a typical second-rank laminate, and one
way that seven points could fall within the gaps of the first stage of
lamination.
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to infinity!. For such laminates, the fields are piecewise uni-
form within the two phases of the composite, and so exact
expressions for the effective properties can be obtained by
using macroscopic methods. However, laminates with only a
finite separation of length scales do not have piecewise uni-
form fields, and for this reason the macroscopic properties of
such laminates cannot be calculated analytically. Some other
technique must be employed to estimate or bound the effec-
tive properties.

To study laminates with a finite separation of length
scales, we will use contrast expansion theory, which was
formulated by Sen and Torquato@16,17#. They derived the
following series expansion for the effective conductivity ten-
sorse for any d-dimensional two-phase random composite
~in particular, random laminates!:

~f ib i j !
2~se2s j I !

21[ ~se1~d21!s j I #

5f ib i j I2 (
n52

`

An
~ i !b i j

n , ~3!

whereI is the identity tensor,i , j51,2, iÞ j ,

b i j5
s i2s j

s i1~d21!s j
, ~4!

and the tensor coefficientsAn
( i ) are functionals of

S1 , . . . ,Sn , whereSp(r
p) is the probability thatp given

points r p[r1 , . . . ,r p all lie within phasei . ~Bounds of ar-
bitrary order can be obtained from~3!; this will be discussed
later.! Unlike the other tensor coefficients,A2

(1)5A2
(2) , and

henceforth their common value will be denoted byA2 . In
two dimensionsA2 is traceless and is explicitly given by

A25
1

p
lim
d→0

E
d

`dr

r E0
2p

duFcos2u sin2u

sin2u 2cos2uG
3@S2~r ,u!2f1

2# ~5!

for statistically homogeneous media; see Ref.@16# for the
integral expressions for the higherAn

( i ) . The quantity (r ,u)
in the integrand represents the separation between the two
points that lie in phase 1 in polar coordinates.

If we omit the series in~3!, we obtain the well-known
Hashin-Shtrikman bounds on the effective conductivity of
isotropic two-phase composites in two and three dimensions
@18#. These bounds are the best possible given only volume-
fraction information, and henceoptimal, since they can be
realized for several classes of composites@3,4,18,19#. One
such class of optimal structures~i.e., structures that achieve
these bounds! are macroscopically isotropic laminates, which
have a wide separation of length scales and satisfy the vol-
ume fraction requirement@3,4#

f2
~1!5f2

~2!/f1
~2! . ~6!

For macroscopically isotropic laminates, the tensor coeffi-
cientsAn

( i ) must vanish@6#.
If S2 is independent of the directionu ~statistical isot-

ropy!, or is symmetric about the lineu5p/4, thenA2 is
trivially zero in view of ~5!. However, from geometrical con-
siderations~elaborated in Sec. II!, S2 is inherently statisti-
cally anisotropic for the hierarchical laminate of Fig. 1 and
thus obeys neither of these symmetries, yetA2 , as shall be
shown, vanishes anyway when the laminate is macroscopi-
cally isotropic. To demonstrate this, we will first calculate the
microstructure functionS2 for laminates and then use~5! to
explicitly show, from the microstructure, thatA250 for mac-
roscopically isotropic laminates.

By taking certain Pade´ approximants of~3!, Sen and
Torquato obtained bounds of arbitrary order on the effective
conductivity tensor in terms of theAn

( i ) , which in turn de-
pend on theSn @16#. In this paper we will study the second-
order bounds obtained from a@1,1# Padéapproximant of~3!.
The bounds on the effective conductivity in the two principal
directions are identical and equal to the Hashin-Shtrikman
bounds wheneverA250. However, whenA2 is not equal to
the zero tensor, the two sets of bounds are not identical but
instead are directionally dependent. Therefore, when we take
laminates which satisfy~6! and have an increasing separation
of length scales, the bounds in the two principal directions
both converge to the Hashin-Shtrikman bounds. Approaching
laminates from the perspective of their microstructure there-
fore allows us to study how the separation of length scales
~i.e., the nonuniformity of the fields within the phases! af-
fects the effective conductivity tensor.

Summarizing, in this paper we study the following ques-
tions: What are theSn for laminates with any separation of
length scales? Does the functional behavior ofSn reflect the
construction of the laminate? Can we bound the effective
conductivity of laminates with a finite separation of length
scales? How does the separation of length scales affect these
bounds? How close are they to the bounds for laminates with
an infinite separation of length scales? Are these results in
agreement with known results as the separation of length
scales tends to infinity? Finally, one outstanding unsolved
problem: what are all classes of optimal composites; i.e.,
what form must theSn have so that theAn

( i ) vanish? A study
of the microstructure of laminates may provide a first step
toward answering this difficult last question.

In Sec. II we obtain analytical representations of theSn
for fully penetrable laminates of arbitrary rank andS2 for
laminates of arbitrary rank and construction in terms of the
microstructure of the one-dimensional generating processes.

FIG. 2. The three one-dimensional random systems considered
in this paper:~a! fully penetrable rods,~b! totally impenetrable rods,
and ~c! a one-dimensional random checkerboard process. The rods
of the three systems have a common widthd; however, the clusters
in systems~a! and ~c! can be longer thand due to overlap. Lami-
nates are generated by extending such systems into two-
dimensional systems of gaps and slabs.
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We explicitly calculateS2 for second-rank fully penetrable
laminates, totally impenetrable laminates, and laminates gen-
erated by random checkerboards. Our expressions are valid
for laminates with a finite separation of length scales. In Sec.
III we use our expression forS2 to calculate the two-point
tensor coefficientA2 and therefore bounds onse for lami-
nates with a finite separation of length scales. We then let the
separation of length scales tend to infinity and verify that the
bounds in the two principal directions indeed both converge
to the Hashin-Shtrikman bounds for macroscopically isotro-
pic hierarchical laminates.

II. MICROSTRUCTURE OF LAMINATES

To begin, we study the microstructure of laminates in the
plane. We first define then-point phase 1 probability func-
tionsSn and the lineal path functionL. These functions are
inherently anisotropic for laminates since the laminates
themselves are statistically anisotropic. We develop a recur-
sive equation valid for anySn for random laminates of arbi-
trary rank generated by systems of fully penetrable rods.
Generalizations are then discussed, including an expression
for S2 for laminates of arbitrary rank and construction; this
expression will be used in our numerical calculations ofA2
in Sec. III. We then use this expression to calculateS2 for
three types of second-rank laminates: fully penetrable lami-
nates, totally impenetrable laminates, and laminates gener-
ated by random checkerboards. Finally, we study howS2
reflects the structure of laminates on their multiple length
scales.~In Appendix A we will consider the lineal path func-
tion for second-rank laminates.!

A. Definitions of microstructure functions

The probability thatn points with positionsrn all lie in
phase 1 is denoted bySn(r

n)5r1 , . . . ,rn and can be explic-
itly written as @20#

Sn~r
n!5K )

j51

n

I ~r j !L , ~7!

whereI is the indicator function of phase 1; i.e.,

I ~r !5H 1, r in phase 1,

0, otherwise.
~8!

The angular brackets denote an ensemble average over the
possible realizations. For statistically homogeneous media,
the Sn are dependent only on the relative displacements so
that, for example,S1 5 f1 , the volume fraction of phase 1.

When we refer to the microstructure of laminates in this
paper,Sn will denote the microstructure function for the full
laminate. We also defineSn

( i ) to be then-point probability
function for phase 1 for the one-dimensional process which
determines thei th stage of lamination.

The probability that a vectorx is wholly contained in
phase 1 is called the lineal path function@21# and is denoted
by L(x). This probability is different thanS2 , which requires
that only the endpoints of the line lie in the same phase. We

also defineL ( i ) to be the one-dimensional lineal path func-
tion for the process which determines thei th stage of lami-
nation.

We now characterize the microstructure of laminates by
calculatingSn in terms of the functionsSn

( i ) andL ( i ).

B. Sn for fully penetrable laminates of arbitrary rank

By a fully penetrable laminate, we mean a laminate gen-
erated by fully penetrable~i.e., spatially uncorrelated! rods at
each stage of lamination, so that thei th stage of lamination is
probabilistically determined by the width of the laminates
di and the number density of laminationr i . We allow the
possibility that the strips overlap in general, so that the
‘‘slabs’’ generated by the strips of thei th stage may have
width greater thandi . We also assume the processes of the
i th stage of lamination are identically distributed and inde-
pendent both of each other and the processes of every other
stage of lamination. This assumption also holds for the more
general laminates considered later in this paper.

To calculate the probability thatn pointsr1 ,r2 , . . . ,rn all
fall in the disconnected phase of akth-rank fully penetrable
laminate, we first order then points by theirx-coordinates so
that x1<x2<•••<xn . We then use a key property of ran-
dom laminates: the laminates of orderk21 embedded in the
gaps of the first stage of lamination are generatedindepen-
dentlyof each other.

To utilize this feature, we introduce some notation to enu-
merate the 2n21 different ways that the orderedn points
could fall into the gaps of the first stage of lamination. Con-
sider the setA of n-tuples of the letters 0 and 1 whosenth
element is 1. Then there is a one-to-one correspondence be-
tween the elements of this set and the permutations of the
n points in different gaps: ifp050 andp1 , . . . ,pm are the
positions of the 1s in an elementa of A, we associate with
this element a the event that the sets of points
$xpj11 , . . . ,xpj11

% fall in the same gap and in a different gap

than the set corresponding to any otherj . ~For brevity we
suppress the dependence of thepj and m on the n-tuple
a.) We conclude from this bijection that there are indeed
2n21 ways the ordered points could lie in the gaps.

To illustrate this notation, consider the event of seven
points falling in the disconnected phase depicted in Fig. 1.
From left to right, the first four points lie in one gap of the
first stage of lamination, the next two points lie in another
gap, while the last point lies a third gap. The sequence cor-
responding to this event isa5$0,0,0,1,0,1,1%, so that
m53, p050 ~as always!, p154, p256, andp357 (pm5n
always!. Under this construction,al51 exactly when point
l is the rightmost point in a gap.

Since a Poisson distributed system has independent and
stationary increments, the probability that then points will
fall in the gaps of the first stage of lamination according to
the arrangement associated withaPA is

P~a!5Sn
~1!~x1 , . . . ,xn!)

l51

n21

M ~xl112xl ;al !, ~9!

whereal is the l th element ofa,
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M ~r ,0!5
L ~1!~r !

S2
~1!~r !

5H 1, r<d1 ,

e2r1~r2d1!, r.d1 , ~10!

and

M ~r ,1!512M ~r ,0!. ~11!

The functionsS2 andL for fully penetrable rods are given
explicitly in ~17! and~18!. The calculation of this probability
is not so trivial for more general one-dimensional processes,
as discussed in the next subsection.

Once we have isolated thex coordinates in the gaps of the
first stage of lamination, we must now calculate the probabil-

ity that the set$r pj11 , . . . ,r pj11
% ~i.e., all the points that lie

in an arbitrary gap! also lies in the disconnected phase. Since
the processes within the gaps of the first stage are embedded
laminates of rank k21 rotated 90° from the usual
orientation, this conditional probability is just
Spj2pj21
8 (r pj2111

t , . . . ,r pj
t ), where r t is the transpose ofr

andSp8 is the p-point disconnected-phase probability func-
tion of the embedded laminates of rankk21.

Since the processes in the embedded laminates are as-
sumed to be independent of each other and the first stage of
lamination, we finally conclude using the law of total prob-
ability that

Sn~r1 , . . . ,rn!5Sn
~1!~x1 , . . . ,xn! (

aPA
)
l51

n21

M ~xl112xl ;al !)
j51

m

Spj2pj21
8 ~r pj2111

t , . . . ,r pj
t !. ~12!

Through repeated use of~12! we can reduceSn for a
kth-rank laminate to the one-dimensional functionsSp

( i ) for
1<p<n and 1< i<k.

C. Sn for general random laminates

In principle, the above approach could be applied to lami-
nates of arbitrary rank generated by random processes other
than fully penetrable rods. However, such a recursive rela-
tionship would require knowledge of microstructure func-
tions never before considered in the literature. For example,
determiningS3 requires knowing the probability that, given
three points, the first two lie in one gap and the third lies in
another gap. While such probabilities can be computed ex-
plicitly for fully penetrable rods, and is done in~9!, they
have not been considered for more general one-dimensional
systems.

However, the probability that only two points do or do not
lie in the same gap is determined by the defined one-
dimensional two-point phase 1 probability functionsS2

( i ) and
the lineal path functionsL ( i ), and soS2 can be calculated for
general random laminates of arbitary rank. Our analysis of
conditioning of the positions of the two points relative to the
first stage of lamination is particularly self-evident in deter-
mining S2 for second-rank laminates of arbitrary construc-
tion. If the two x coordinates lie in the same gap, then the
y coordinates both must lie in phase 1 of the second-stage
one-dimensional process in that gap. On the other hand, if
they lie in different gaps, then the twoy coordinates need to
lie in phase 1 of two independent processes. Using the law of
total probability and this analysis, we conclude that

S2~x,y!5L ~1!~x!S2
~2!~y!1@S2

~1!~x!2L ~1!~x!#~f1
~2!!2,

~13!

where (x,y) is the displacement between the two points. The
complexity of the general expression~12! is thus greatly sim-
plified whenn5k52. Similar expressions forS2 can be de-
veloped for laminates of higher rank. As expected,S2(x,y)

tends to its long-range value off1
2 asx,y→`. This will be

used in the integrations of the next section.
Finally, we can use our analysis to calculateSn for lami-

nates that do not have orthogonal stages. For example, a
second-rank laminate whose second stage is at angleu from
horizontal can be transformed to a topologically equivalent
orthogonal laminate via the linear transformation

~x,y!→~x,y2x tanu!. ~14!

To calculateSn for this slanted laminate, we would first
project the points to their images under the above transfor-
mation and then calculateSn for this orthogonal laminate.

D. Calculation of S2 for second-rank laminates

In this section we will use~13! to calculateS2(x,y) for
second-rank fully penetrable laminates, totally impenetrable
laminates, and laminates generated by random checker-
boards. We will also show thatS2 reflects the behavior of
laminates on their multiple length scales.

1. Fully penetrable laminates

We now explicitly stateS2 for fully penetrable second-
rank laminates in terms of the generating one-dimensional
processes. The microstructure of fully penetrable rods~an
example of which is shown in Fig. 2! on a line is very well
understood. If the rods have diameterd and number density
r, and we define the reduced densityh by

h5rd, ~15!

then we have@22#

S1[f15e2h. ~16!

For two points separated by a distancex, the two-point phase
1 probability function is given by
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S2~u!5H e2h~11u!, u<1,

e22h, u.1, ~17!

whereu5uxu/d is dimensionless distance.
The lineal path function for fully penetrable rods is given

by @21#

L~u!5e2h~11u!, ~18!

so that, not surprisingly,L(u)5S2(u) for u<1.
Substitution of these results into~13! and use of dimen-

sionless unitsu5uxu/d1 andv5uyu/d2 yields

S2~u,v !55
f1e

2h1u2h2v, u<1,v<1,

f1e
2h1u2h2, u<1,v.1,

f1@e
2h1u~e2h2v2e2h2!1f1#, u.1,v<1,

f1
2 , u.1,v.1,

~19!

whereh1 andh2 are the reduced densities for the first and
second stages of lamination, respectively. Notice thatS2 is
identically equal tof1

2 for sufficiently largeu andv, just as
in the one-dimensional case of fully penetrable rods.

This expression forS2 matches simulation data as well. In
Fig. 3 we plotS2 for second-rank fully penetrable laminates,
where in thex-direction we takeh151/4, while in the
y-direction we take d25d1/2 and h251/3. We plot
S2(w,u) for w50.75 andw52.5 over 0<u<p/2, where

x5r cosu ~20!

and

y5r sinu ~21!

as usual, andw5r /d1 . @From geometric considerations,
S2(w,u) is symmetric aboutu5p/2 and is periodic with
period p.# As we see, our simulation data is in excellent
agreement with~19!. We also note that, as expected,S2 is not
symmetric aboutu5p/4.

2. Totally impenetrable laminates

We now consider second-rank laminates which are con-
structed by systems of hard rods of equal diameterd in ther-
mal equilibrium. A possible realization of such a system was
given in Fig. 2. As before, we need the quantitiesS2

( i ) (x) and
L ( i )(x) for the one-dimensional processes that generate the
laminate to determineS2 for the full laminate. Torquato and
Lado @23# calculatedS2 explicitly for a system of hard rods
in equilibrium. After some simplification their expression
can be written in terms of the dimensionless distance
u5uxu/d as

S2~u!5~12h!(
k50

j
exp~2@u2k#/a!

k! S u2k

a D k, ~22!

where j<u< j11 and

a5
12h

h
. ~23!

As before,h is the reduced density. Since the rods do not
overlap,

f1512h. ~24!

For sufficiently largeu, S2(u) can be accurately approxi-
mated using the method of subtracted singularities, as ex-
plained in Appendix B. This asymptotic approximation will
turn out to be useful in numerically computing the tensor
coefficientA2 , as described in Sec. III.

Also, Lu and Torquato@21# calculated the lineal path
function L exactly for a system of hard rods in equilibrium
and found that

L~u!5~12h!exp~2u/a!. ~25!

FIG. 3. The two-point probability functionS2(w,u) for a
second-rank fully penetrable laminate withd25d1/2, h151/4, and
h251/3. Heredi andh i are the rod lengths and reduced densities
of stagei , respectively.S2 is shown at dimensionless radial dis-
tancesw5r /d150.75 andw52.5. Computer simulation data are
represented by circles. We see that the theoretical expression~19!
for S2 is in excellent agreement with simulation results.
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As before,L(u)5S2(u) for u<1.
Therefore, to calculateS2 for totally impenetrable lami-

nates, we substitute~22! and ~25! with appropriateh1 and
h2 into ~13!. As with fully penetrable laminates, this expres-
sion is also in agreement with computer simulations.

3. Random checkerboard laminates

A third type of laminate is constructed by one-
dimensional checkerboard processes, also depicted in Fig. 2,
in which the line is divided into equisized sections of width
d. Each section, independent of the other sections, belongs to
phase 1 with probabilityf1 and phase 2 with probability
f2 . The required microstructure functions for phase 1 are
then given by

S2~u!5H ~12u!f11uf1
2 , u<1,

f1
2 , u.1,

~26!

and

L~u!5~12z!f1
n1zf1

n11 , ~27!

where the dimensionless distance is decomposed as
u5(n21)1z with 0<z,1. Substitution of these into~13!
givesS2 for the full laminate. We note that for sufficiently
largex andy, S2(x,y) is identically equal tof1

2 , just as in
the case of the one-dimensional checkerboard model.

4. Behavior of S2 on different length scales

To conclude this section we discuss how the graph ofS2
can reflect the processes which construct the laminate. In
particular, we show thatS2 reflects microstructural informa-
tion about a composite on its different length scales.

In Fig. 4 we plotS2(w,p/6), where again we use polar
coordinates withw5r /d1 , for a laminate constructed by two

different one-dimensional processes. The first stage is gener-
ated by a system of fully penetrable rods withh150.4. The
second stage is generated by systems of totally impenetrable
rods in thermal equilibrium withh250.8 andd250.1d1 .

As we see,S2 for this laminate reflects properties of the
functional behavior ofS2 for the one-dimensional processes.
On the length scalew5O(1), S2 decays exponentially and
then more or less flattens, just like it does for ‘‘pure’’ fully
penetrable rods@see ~17!#. However, on the length scale
w5O(0.1), we see a sharp cusp and dampened oscillations,
just like S2 for ‘‘pure’’ totally impenetrable rods in thermal
equilibrium @see~22!#. While we cannot conclude decisively
from this graph the precise components of the laminate, we
see that the structure of the laminate on both length scales is
reflected inS2 .

III. EFFECTIVE CONDUCTIVITY TENSOR
OF LAMINATES

A laminate with a finite separation of length scales has
fields which are not piecewise uniform, and so its effective
conductivity cannot be calculated analytically. We will use
rigorous second-order bounds onse that depend onS2
~which was calculated in the previous section! and the phase
conductivitiess1 ands2 to estimate the effective conductiv-
ity for laminates with a finite separation of length scales. We
verify that these bounds converge to the Hashin-Shtrikman
bounds for macroscopically isotropic laminates, i.e., lami-
nates that satisfy~6! and have an infinite separation of length
scales.

A. Second-order contrast bounds

By taking certain Pade´ approximants of~3!, Sen and
Torquato@16# obtained bounds of arbitrary order on the ef-
fective conductivity tensorse . The second-order bounds on
se are given by

se

s j
5I1

f i~s i2s j !

s j
F I2 1

f i

~s i2s j !

s j
a2G21

, ~28!

wherei , j51,2 andiÞ j as before,

a25
1
2 ~A22f if j I !, ~29!

and A2 is given by ~5!. For s2>s1 , we obtain a lower
bound from~28! for j51 andi52, and we obtain an upper
bound for j52 andi51.

We note in passing that one can eliminate the parameter
a2 by utilizing the property that Tra252f if j ~sinceA2
is traceless! to yield the simpler bounds on the eigenvalues
l1 andl2 of se obtained by Lurie and Cherkaev@3,9# and
by Tartar@4#:

1

s1
1

1

l12s1
1

1

l22s1
<

1

f2
S 1s1

1
2

s22s1
D , ~30!

1

s2
1

1

l12s2
1

1

l22s2
>

1

f1
S 1s2

1
2

s12s2
D , ~31!

wheres2>s1 .

FIG. 4. S2(w,p/6) in a mixed second-rank laminate where
againw5r /d1 . The first stage is generated by fully penetrable rods
with h150.4. The second stage is generated by totally impenetrable
rods in thermal equilibrium withh250.8 andd250.1d1 . As we
see,S2 for this mixed system has characteristics of both systems on
the two different length scales.
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WhenA250, the bounds~28! coincide with the Hashin-
Shtrikman bounds on macroscopically isotropic two-phase
composites, which are known to be optimal for several
classes of composites. One such class is a geometry of space-
filling, singly-coated circular cylinders@18#, where the inner
core is one phase and the outer shell is the other phase.
Another example is the Vigdergauz construction@19#. Also,
the bounds~28! are realized forA2Þ0 by space-filling, sin-
gly coated ellipsoids@4,24,25#.

Second-rank laminates with a wide separation of length
scales have also been shown by macroscopic methods to
achieve the bounds~28! and thus are optimal composites
@3,4#. We conclude again thatA2 must be the zero tensor for
macroscopically isotropic laminates. However, this previous
research does not determineA2 and hence the bounds~28!
for laminates with a finite separation of length scales.

In order to quantify the degree of anisotropy of laminates
with a finite separation of length scales, we introduce the
parameter

g5
max~ uL1u,uL2u!

f1f2
, ~32!

whereL1 andL2 are the eigenvalues ofA2 . This is a purely
microstructural parameter, independent of the conductivities
s1 ands2 . Since2f1f2<L1 ,L2<f1f2 @16#, we see that
0<g<1. Wheng50, the system is macroscopically isotro-
pic. However, wheng51 ~achieved by a system of aligned
needles!, the system is quite anisotropic. In the next section
we will study the dependence ofg on the separation of
length scales.

B. Calculation of bounds for laminates

We now directly calculateA2 for laminates with any sepa-
ration of length scales by numerically integrating~5! using
~13!, and explicitly verify thatA2 indeed tends to zero for
second-rank laminates which obey~6! as the separation of
length scales tends to infinity. While this result is expected, it
is not at all obvious from the perspective of the microstruc-
ture sinceS2(r ,u) is not symmetric aboutu5p/4 for lami-
nates, as discussed in the Introduction. We then calculate
bounds on the effective conductivity tensor using~28!.

To begin our analysis, laminates are symmetric about
u5p/2; therefore, in view of~5!, the off-diagonal compo-
nents ofA2 are zero. Our calculation ofA2 thus reduces to
calculating only one of the diagonal components.

We now consider fully penetrable laminates with a wide
separation in length scales and substitute~19! into ~5! to
calculateA2 asymptotically for fixedh1 andh2 as the sepa-
ration of length scalesq5d1 /d2→`. We find that

~A2!yy52f1~122f1
~2!1f1!1O~ lnq/q! ~33!

asq→`. Recall thatf1
(2) is the volume fraction of phase 1

of the one-dimensional process which determined the second
stage of lamination, which is

f1
~2!5e2h25e2r2d2 ~34!

for fully penetrable laminates from~16!. The calculation of
~33! is described in Appendix C. We conclude from this as-

ymptotic result thatA2 tends to zero as the separation of
length scales tends to infinity whenever~6! is satisfied. We
also conclude that fully penetrable laminates with a wide
separation of length scales achieve the anisotropic bounds of
~28!.

We now numerically calculateA2 and henceg for lami-
nates with a finite separation of length scales. In Fig. 5 we
plot numerical evaluations ofg for laminates which satisfy
~6! at variousf1 andq. We again see thatg→0 asq→`.
We also see that, for constantq, g decreases asf1 increases.
This makes heuristic sense: for smallf1 , the laminate will
resemble a system of aligned needles, while for largef1
there will be very few slabs in both thex andy directions,
and hence the laminate will have similar structure in both
directions.

From our numerical evaluation ofA2 , we now obtain
bounds onse by using~28!. In Figs. 6, 7, and 8 we show the
x andy components ofse for fully penetrable laminates of
second rank which satisfys2 /s1510 and~6! for q51, 10
and`, respectively. We see that as the separation of length
scales increases, the bounds in thex and y directions con-
verge until they are identical and equal to the two-
dimensional Hashin-Shtrikman bounds when the laminate is
macroscopically isotropic. Using~28! and ~13!, we are also
able to calculate bounds onse for second-rank laminates of
arbitrary construction.

When d15d2 , we see that the bounds on the effective
conductivity in thex direction are somewhat smaller than the
bounds in they direction; in fact, for sufficiently smallf1 ,
the lower bound on (se)yy is larger than the upper bound on
(se)xx , regardless of which phase has a higher conductivity.
A physical explanation of this phenomenon when the discon-
nected phase is a better conductor than the connected phase
is trivial: even for very smallf1 , the volume fraction re-
quirement~6! still requires thatf1

(2) will be no smaller than
0.5. Therefore, the laminate will resemble a system of highly
conducting needles aligned in they direction. On the other

FIG. 5. The anisotropy parameterg, given in~32!, for laminates
which satisfy~6! versus separation of length scalesq5d1 /d2 , at
several volume fractionsf1 of the disconnected phase~phase 1!. As
expected,g tends to zero asq tends to infinity. We see that
g,0.05 wheneverf1.0.2 andq.30.
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hand, if the slabs are better conductors, then current will be
able to flow in they direction in a straight line unimpeded,
while current in thex direction will tend to flow around the
needles. Such heuristic explanations, however, do not ex-
plain the behavior of the bounds for all possible length
scales, phase conductivities and phase volume fractions.

IV. CONCLUSIONS

We have calculatedSn for fully penetrable laminates and
S2 for general laminates of arbitrary rank in terms of their
constituent processes. We have explicitly givenS2 for three
different types of second-rank laminates: fully penetrable,
totally impenetrable, and random checkerboard. Using our
expression forS2 , we have calculated the tensor coefficient
A2 numerically for general second-rank laminates, thereby
obtaining estimates on the effective conductivity tensor in
the form of bounds. We have done this for laminates with an

arbitrary separation of length scales. We have also explicitly
verified thatA2 indeed vanishes for optimal, macroscopically
isotropic laminates, even thoughS2 for laminates does not
have symmetry aboutu5p/4.

This last observation leads to the natural question raised
in the Introduction: what symmetries must theSn for opti-
mal, macroscopically isotropic composites possess so that all
of the tensor coefficientsAn

( i ) vanish? This is a very difficult
question to answer generally. We have shown explicitly that
a sufficient condition forA2 to vanish is anS2 of the form
~13! for any choice ofS2

(1) , L (1), andS2
(2) , as long as con-

dition ~6! is satisfied and the separation of length scales be-
tween the two stages tends to infinity. From~5!, another suf-
ficient condition is symmetry ofS2 aboutu5p/4. We have
not shown, however, that these conditions are necessary. We
have also not considered conditions which would ensure that
the higherAn

( i ) vanish.
From a practical point of view, laminates with an infinte

separation of length scales cannot be constructed. A natural
question is thus determining how large the separation of
length scales should be so that, for all intents and purposes,
the laminate is an optimal structure. Judging by the conver-
gence of the bounds, we suggest that a reasonable condition
for declaring a second-rank laminate to be macroscopically
isotropic isg,0.05. This is achieved at most volume frac-
tions whenq.30.
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APPENDIX A: LINEAL PATH FUNCTION FOR SECOND-
RANK LAMINATES

To characterize their microstructure, we determinedSn for
laminates in Sec. II. We continue this characterization by

FIG. 6. The second-order bounds on thex andy components of
the scaled effective conductivityse /s1 for second-rank fully pen-
etrable laminates in whichs2 /s1510. Heres1 and s2 are the
conductivities of phases 1 and 2, respectively. The laminates de-
picted in the above graph are determined by~6! and the length scale
ratio q5d1 /d251.

FIG. 7. As in Fig. 6, exceptq510.

FIG. 8. As in Fig. 6, exceptq5`. Since we impose an infinite
separation of length scales, the laminates are macroscopically iso-
tropic and the bounds are independent of direction.
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determining the lineal path function for second-rank lami-
nates, i.e., the probability that the line connecting two points
lies entirely in one of the phases. Using the independence of
successive stages, the probability that the line between two
points lies entirely in phase 1 is given by

L1~x,y!5L ~1!~x!L ~2!~y!. ~A1!

The corresponding probability for phase 2 is not nearly as
trivial to calculate; a full expression forL2(x,y) would re-
quire knowledge of the joint distribution of the size of the
clusters and the number of gaps in a given interval. However,
in they direction, the connected-phase lineal path function is
given by

L2~0,y!5f2
~1!1f1

~1!C2
~2!~y!, ~A2!

whereC2
(2) is the two-point cluster function@26# for the sec-

ond stage of lamination. In thex direction we have

L2~x,0!5(
r50

`

Nr~x!~f2
~2!!r , ~A3!

whereNr(x) is the probability that, for the one-dimensional
process which generates the first stage of lamination, a given
interval of lengthx contains exactlyr gaps~including gaps at
the beginning and the end of the interval!.

The probabilityNr for fully penetrable rods was calcu-
lated by Domb@27#. In terms of the dimensionless distance
u5uxu/d1 , where as before we takej<u< j11,Nr is given
by

N0~u!511 (
k50

j

~21!k11f1
k11S @h~u2k!#k

k!
1

@h~u2k!#k11

~k11!! D ~A4!

for r50 and by

Nr~u!5 (
k50

j2r11

~21!kf1
j1kS j1k

k D S @h~u2 j2k11!# j1k21

~ j1k21!!
1

@h~u2 j2k11!# j1k

~ j1k!! D ~A5!

for 1<r< j11, whileNr(u)50 otherwise. In these expres-
sionsh is again the reduced density defined by~15!. In one
dimension, the probability that a given interval has no gaps is
the two-point cluster functionC2 , which was independently
calculated by C¸ inlar and Torquato@28#. Substitution ofNr
into ~A3! gives L2(x,0) for second-rank laminates whose
first stage is generated by fully penetrable rods.

APPENDIX B: ASYMPTOTIC APPROXIMATION OF S2
FOR HARD RODS IN EQUILIBRIUM

We develop an asymptotic approximation forS2(u) as the
dimensionless distanceu→` for a one-dimensional system
of hard rods of unit diameter in equilibrium. This approxi-
mation is useful when numerically calculatingA2 using ~5!.

To obtain this approximation, we find a generating func-
tion whose coefficients giveS2(u). We then use the method
of subtracted singularities to determine the asymptotic be-
havior of the coefficients@and henceS2(u)# for largeu.

We first state the main theorem behind the method of
subtracted singularities@29,30#.

Theorem. Let the functionf be meromorphic foruzu<R
and analytic foruzu5R and z50, with simple poles inside
this circle atzi with residuesci , i51, . . . ,m. Then the co-
efficients f n defined by

f ~z!5 (
n50

`

f nz
n ~B1!

satisfy

f n52 (
k51

m
ck
zk
n11 1O~R2n!. ~B2!

~This theorem can be generalized to functions with poles of
finite order greater than one, but for the present purpose this
generalization is not needed.!

To apply this theorem to the present problem, we restrict
0<y,1 and define the sequence$aj (y)% by

aj~y!5S2~ j1y!. ~B3!

Recall thatS2 for hard rods in equilibrium is given by~22!.
We now seek the generating function for this sequence,

i.e., the function that satisfies

f ~z;y!5(
j50

`

aj~y!zj . ~B4!

Straightforward algebraic manipulation verifies that this
function is given by

f ~z;y!5
~12h!exp@~z21!y/a#

12z exp@~z21!/a#
. ~B5!

Recall thata is defined by~23!. To use the method of sub-
tracted singularities to determine the asymptotic growth of
the coefficients off @and hence the growth ofS2( j1y) as
j→`#, we must first find the poles and associated residues of
f . Clearlyz051 is a pole off with residue
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c052
12h

111/a
. ~B6!

For h,1 there are no poles with modulus less than one.
Therefore, asu5 j1y→`, ~B2! implies that

S2~u!→
12h

111/a
12~ j11! as j→`

5~12h!2. ~B7!

as expected. Whenh50.5 this limit reduces to the remark-
able identity

lim
j→`

(
k50

j

e2k
kj2k

~ j2k!!
5
1

2
. ~B8!

To determine the oscillations around the long-range value,
other complex poles must be calculated numerically; they
will depend on the value ofh for the system. Every pole of
f can be shown to be simple and the residue at a polez is
given by

c52
~12h!exp@~z21!y/a#

~11z/a!exp@~z21!/a#
. ~B9!

In summary, once we have numerically calculated the
poles of smallest modulus off , we can use the above theo-
rem and ~B9! to determine the asymptotic behavior of
S2(u).

To see how useful the above procedure is, we now take
h50.5. The first four nontrivial poles off for this choice of
h are approximately

z1,2520.53209264.597158i ~B10!

and

z3,4521.393982610.868006i , ~B11!

with residues

ck52$exp@~zk21!y#%~0.48904460.107648i ! ~B12!

for k51,2 and

ck52$exp@~zk21!y#%~0.50165560.0459462i ! ~B13!

for k53,4. We now substitute these values into~B2! and
compare with the exact result of~22! for h50.5. We see in
Fig. 9 that this ‘‘asymptotic’’ expression is in fact very close
to the actual value ofS2(u) for small u using only the first
four nontrivial poles. We also can use this expression for
S2 at large distances to accurately and quickly calculate the
integrand of~5! when calculatingA2 for totally impenetrable
laminates.

APPENDIX C: ASYMPTOTIC BEHAVIOR OF A2

FOR LAMINATES WITH A WIDE SEPARATION
OF LENGTH SCALES

We discuss how~33! can be derived for fully penetrable
laminates. Combining~19! and ~5!, we find that, when
d1.2d2 ,

~A2!yy5I 11I 21I 31I 41I 5 , ~C1!

where

I 15
4

pEd2
`E

0

d1 y22x2

~x21y2!2
~e2r1~x1d1!22r2d22f1

2!dx dy,

~C2!

I 25
4

pE0
d2E

d1

` y22x2

~x21y2!2
f1e

2r1x~e2r2y2e2r2d2!dx dy,

~C3!

I 352
4

p
lim
d→0

E
d

d2E
0

p/2cos2u

r
~e2r1r cosu2r2r sinu2f1

2!du dr,

~C4!

I 45
4

pE0
d2EAd2

2
2y2

2d2 y22x2

~x21y2!2
~e2r1x2r2y2f1

2!dx dy,

~C5!

and

I 55
4

pE0
d2E

2d2

d1 y22x2

~x21y2!2
~e2r1x2r2y2f1

2!dx dy.

~C6!

FIG. 9. Exact graph of the two-point probability function
S2(u) for totally impenetrable rods in thermal equilibrium and its
asymptotic approximation using the first four nontrivial poles. The
reduced density of the system of rods ish50.5. The approximation
is very close to the exact result even for small values of the dimen-
sionless distanceu.
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We have converted to rectangular coordinates for each of
these expressions exceptI 3 . We have also used the symme-
try of S2 to calculateA2 in terms of integrals on the first
quadrant.

As q5d1 /d2→` for fixed h1 andh2 , we use the domi-
nated convergence theorem@31# to replace the integrands by
a series in 1/q; depending on the domain we expand either
the exponential term or the term (y22x2)/(x21y2)2. Evalu-

ation of the resulting integrals yields~33!.
A similar analysis shows that~33! is satisfied for lami-

nates constructed by one-dimensional random checker-
boards. In fact, since all laminates with an infinite separation
of length scales must achieve the Pade´ bounds on effective
conductivity,~33! must be true to leading order, regardless of
how the laminate is constructed. This is not at all obvious
from the perspective of the microstructure.
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